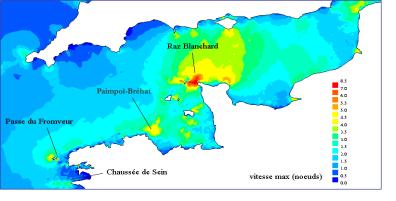
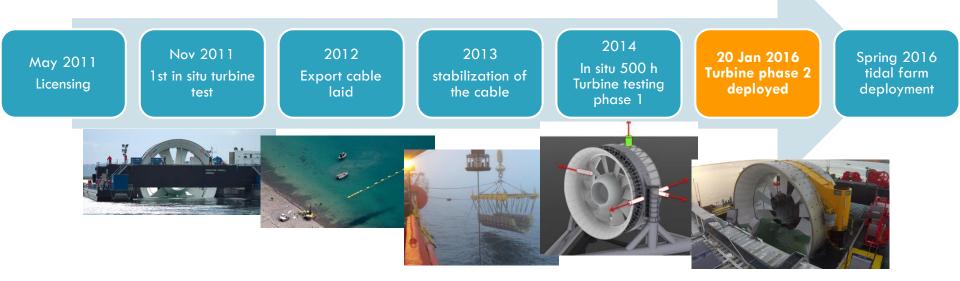
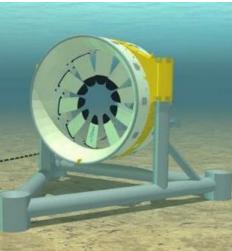


Environmental monitoring of the Paimpol-Brehat tidal project


Agnès Barillier (EDF) & Antoine Carlier (Ifremer)


With contributions from Julien Dubreuil (In Vivo), Florence Lafon (EDF), Nina Cudennec (IFREMER), Xavier Demoulin (Marée/Altran), Bretagne plongée

ICOE 2016 - Edinburgh, Scotland (February 23rd 2016)



A step by step deployment

Adapted environmental monitoring

Benthic endofauna : richness, density of species Seagrass: natural recolonization of *Zostera noltii* & *Z. marina* and transplantation experiments Noise (drifting hydrophons) Tidal currents (ADCP) Fauna : for the time being, only the initial state of benthos and marine mammals has been assessed

Benthic epifauna: richness, density of sessile species Special focus on introduced species (ascidian *Styela clava* and gasteropod *Crepidula fornicata*)

© Dugornay IFREMER

Endofauna : localized and reversible impact of the cable work



	May 2012				May	014				
	4					↓		4		
	before work	S1	S2	S	3+	S3		S4	S5	
Abundance, N	425	194	282	9	13	826		457	346	
Richness, nb sp	45	31	27	50	56 4		53		34	
Indice	before work	S1	S2		S3		S4		S5	
average diversity	2,36	1,33	1,54		2,37		3,02		2,54	
average equitability	0,84	0,57	0,65	0,70		0	0,88		0,88	
		August 2012				August 2013				
AMBI = I(%) = II(%) = III(%) = III(%) = V(%) = V(%)								\$5	2% ^{1%} 22%	

64%

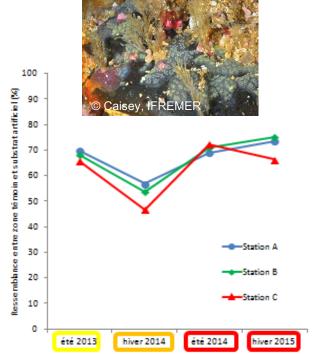
Zostera sp.: relatively successful transplantation of seagrass but...

- Select the place of transplantation with care (a 2nd experimental zone failed)
- Z. noltii more successful than Z. marina

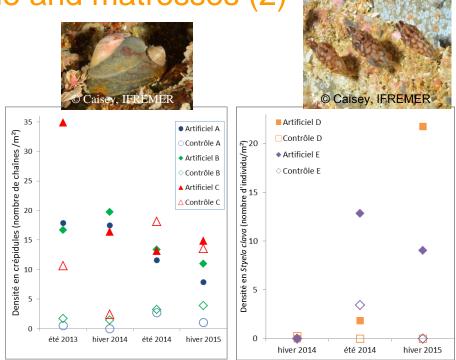
Zostera sp.: natural recovery relatively quick for *Z. noltii* and slower for *Z. marina*

begins after the trench refills with natural sediment (1 year)
still on-going for *Z. marina* in 2015 (90m)
natural recolonization from seagrass close to the trench

Biological colonization of the cable and matresses (1)



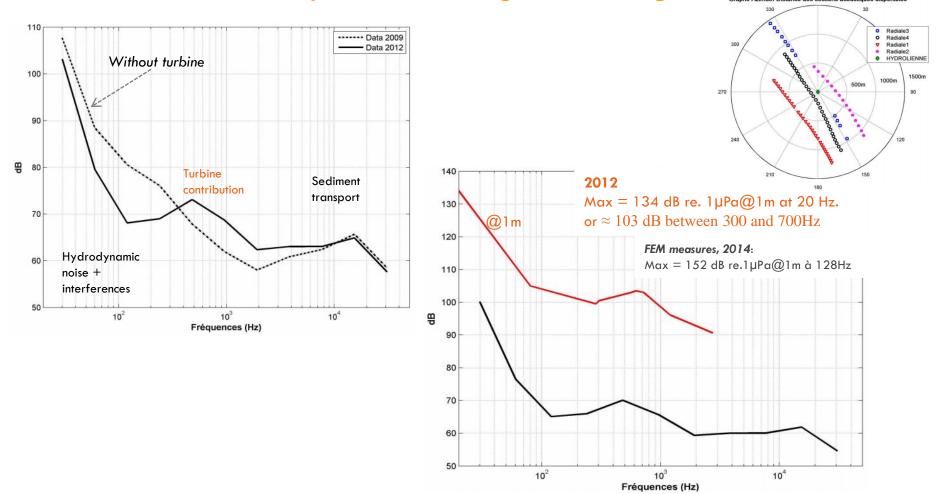
Difremer 2015


Benthic colonization is gradual with a high seasonal variability (winter/summer)

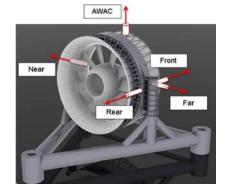
Matresses are significant habitats for Crustaceans (lobster, ...), Fish (conger, ..) and are attractive for numerous other fish (pollock, dogfish...)

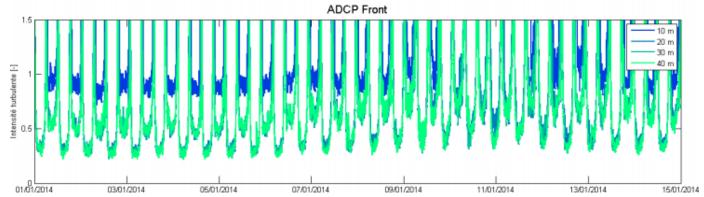
Biological colonization of the cable and matresses (2)

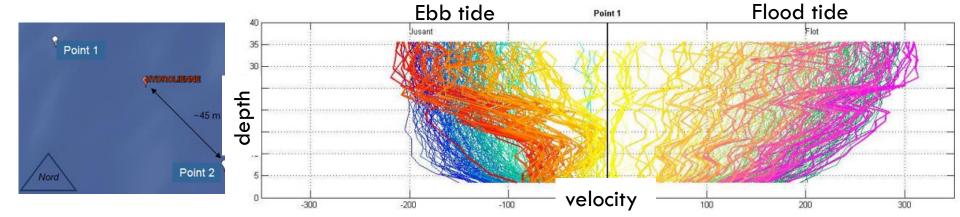
Biocenoses are 60-70% similar to the natural control ones



Introduced species show different dynamics of colonization on artificial substrates :


•Decreasing density over time for common slipper limpet ;


• Increasing density for Styela clava


The turbine is as noisy as small tugs or fishing boats

Influence of the turbine on the flow velocities

Messages to take home

- **Cable (muddy sediment)**: High localized impact on fauna and flora. Recovery within one year (fauna, *Zostera noltii*) or when the trench is refilled (2 to 3 years for *Z. marina* in deepest zones)
- **Zostera transplantation experiment** : effective, providing the zone is chosen with care.
- Cable and matresses (rocky substrate) : progressive biological colonization with 60-70% similarity of the communities (compared to control) ; introduced species colonize artificial substrates more than natural ONES. Matresses attract crustaceans (lobsters) and fish (conger, ...)
- Current : localized wake effect (30-50% reduction of velocities at 45m; no further disturbance of turbulence intensity after 40m). The wake effect is perceptible up to 250m at ebb tide and 800m at flood tide.
- Noise : the site is noisy ; turbine makes little noise which is not discernable from 500 to 1200 m away (depending on tides) (20 4000 Hz ; 134 dB re. 1µPa@1m at 20 Hz).
- **Bio-monitoring** : highly difficult because of depth (up to 35m), distance (15 km out of sea), and ... current
- Next step : monitore the farm noise (impact on marine mammals) and the benthos

Thank you for listening